Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(1): 102775, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38085640

RESUMO

The fluorescent non-canonical amino acid tagging (FUNCAT) technique has been used to visualize newly synthesized proteins in cell lines and tissues. Here, we present a protocol for measuring protein synthesis in specific cell types in the mouse brain using in vivo FUNCAT. We describe steps for metabolically labeling newly synthesized proteins with azidohomoalanine, which introduces an azide group into the polypeptide. We then detail procedures for binding a fluorophore-conjugated alkyne to the azide group to allow its visualization. For complete details on the use and execution of this protocol, please refer to tom Dieck et al. (2012)1 and Hooshmandi et al. (2023).2.

2.
Sci Adv ; 9(44): eadh9603, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922363

RESUMO

Activation of the mechanistic target of rapamycin complex 1 (mTORC1) contributes to the development of chronic pain. However, the specific mechanisms by which mTORC1 causes hypersensitivity remain elusive. The eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) is a key mTORC1 downstream effector that represses translation initiation. Here, we show that nociceptor-specific deletion of 4E-BP1, mimicking activation of mTORC1-dependent translation, is sufficient to cause mechanical hypersensitivity. Using translating ribosome affinity purification in nociceptors lacking 4E-BP1, we identified a pronounced translational up-regulation of tripartite motif-containing protein 32 (TRIM32), an E3 ubiquitin ligase that promotes interferon signaling. Down-regulation of TRIM32 in nociceptors or blocking type I interferon signaling reversed the mechanical hypersensitivity in mice lacking 4E-BP1. Furthermore, nociceptor-specific ablation of TRIM32 alleviated mechanical hypersensitivity caused by tissue inflammation. These results show that mTORC1 in nociceptors promotes hypersensitivity via 4E-BP1-dependent up-regulation of TRIM32/interferon signaling and identify TRIM32 as a therapeutic target in inflammatory pain.


Assuntos
Interferon Tipo I , Nociceptores , Camundongos , Animais , Nociceptores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Interferon Tipo I/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(49): e2308671120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015848

RESUMO

Activation of neuronal protein synthesis upon learning is critical for the formation of long-term memory. Here, we report that learning in the contextual fear conditioning paradigm engenders a decrease in eIF2α (eukaryotic translation initiation factor 2) phosphorylation in astrocytes in the hippocampal CA1 region, which promotes protein synthesis. Genetic reduction of eIF2α phosphorylation in hippocampal astrocytes enhanced contextual and spatial memory and lowered the threshold for the induction of long-lasting plasticity by modulating synaptic transmission. Thus, learning-induced dephosphorylation of eIF2α in astrocytes bolsters hippocampal synaptic plasticity and consolidation of long-term memories.


Assuntos
Astrócitos , Potenciação de Longa Duração , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/genética , Hipocampo/fisiologia , Biossíntese de Proteínas , Região CA1 Hipocampal , Memória de Longo Prazo/fisiologia
4.
Neuron ; 111(19): 3028-3040.e6, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37473758

RESUMO

Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Animais , Camundongos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Proteína do X Frágil de Retardo Mental/genética , Neurônios/metabolismo , Fenótipo , Camundongos Knockout , Modelos Animais de Doenças
5.
Front Cell Dev Biol ; 11: 1205112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293130

RESUMO

Tuberous sclerosis complex (TSC) is a rare monogenic disorder co-diagnosed with high rates of autism and is caused by loss of function mutations in the TSC1 or TSC2 genes. A key pathway hyperactivated in TSC is the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which regulates cap-dependent mRNA translation. We previously demonstrated that exaggerated cap-dependent translation leads to autism-related phenotypes and increased mRNA translation and protein expression of Neuroligin 1 (Nlgn1) in mice. Inhibition of Nlgn1 expression reversed social behavior deficits in mice with increased cap-dependent translation. Herein, we report elevated translation of Nlgn1 mRNA and an increase in its protein expression. Genetic or pharmacological inhibition of Nlgn1 expression in Tsc2 +/- mice rescued impaired hippocampal mGluR-LTD, contextual discrimination and social behavior deficits in Tsc2 +/- mice, without correcting mTORC1 hyperactivation. Thus, we demonstrate that reduction of Nlgn1 expression in Tsc2 +/- mice is a new therapeutic strategy for TSC and potentially other neurodevelopmental disorders.

6.
Cell Rep ; 42(1): 112010, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656715

RESUMO

Neuropathic pain is a debilitating condition resulting from damage to the nervous system. Imbalance of spinal excitation and inhibition has been proposed to contribute to neuropathic pain. However, the structural basis of this imbalance remains unknown. Using a preclinical model of neuropathic pain, we show that microglia selectively engulf spinal synapses that are formed by central neurons and spare those of peripheral sensory neurons. Furthermore, we reveal that removal of inhibitory and excitatory synapses exhibits distinct temporal patterns, in which microglia-mediated inhibitory synapse removal precedes excitatory synapse removal. We also find selective and gradual increase in complement depositions on dorsal horn synapses that corresponds to the temporal pattern of microglial synapse pruning activity and type-specific synapse loss. Together, these results define a specific role for microglia in the progression of neuropathic pain pathogenesis and implicate these immune cells in structural remodeling of dorsal horn circuitry.


Assuntos
Microglia , Neuralgia , Humanos , Microglia/patologia , Neuralgia/patologia , Corno Dorsal da Medula Espinal/patologia , Sinapses/patologia , Medula Espinal/patologia
7.
Brain ; 146(5): 2175-2190, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315645

RESUMO

MAPK interacting protein kinases 1 and 2 (Mnk1/2) regulate a plethora of functions, presumably via phosphorylation of their best characterized substrate, eukaryotic translation initiation factor 4E (eIF4E) on Ser209. Here, we show that, whereas deletion of Mnk1/2 (Mnk double knockout) impairs synaptic plasticity and memory in mice, ablation of phospho-eIF4E (Ser209) does not affect these processes, suggesting that Mnk1/2 possess additional downstream effectors in the brain. Translational profiling revealed only a small overlap between the Mnk1/2- and phospho-eIF4E(Ser209)-regulated translatome. We identified the synaptic Ras GTPase activating protein 1 (Syngap1), encoded by a syndromic autism gene, as a downstream target of Mnk1 because Syngap1 immunoprecipitated with Mnk1 and showed reduced phosphorylation (S788) in Mnk double knockout mice. Knockdown of Syngap1 reversed memory deficits in Mnk double knockout mice and pharmacological inhibition of Mnks rescued autism-related phenotypes in Syngap1+/- mice. Thus, Syngap1 is a downstream effector of Mnk1, and the Mnks-Syngap1 axis regulates memory formation and autism-related behaviours.


Assuntos
Transtorno Autístico , Fator de Iniciação 4E em Eucariotos , Animais , Camundongos , Fator de Iniciação 4E em Eucariotos/genética , Camundongos Knockout , Fosforilação , Proteínas Ativadoras de ras GTPase/metabolismo
8.
J Clin Invest ; 133(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394958

RESUMO

Repeated or prolonged, but not short-term, general anesthesia during the early postnatal period causes long-lasting impairments in memory formation in various species. The mechanisms underlying long-lasting impairment in cognitive function are poorly understood. Here, we show that repeated general anesthesia in postnatal mice induces preferential apoptosis and subsequent loss of parvalbumin-positive inhibitory interneurons in the hippocampus. Each parvalbumin interneuron controls the activity of multiple pyramidal excitatory neurons, thereby regulating neuronal circuits and memory consolidation. Preventing the loss of parvalbumin neurons by deleting a proapoptotic protein, mitochondrial anchored protein ligase (MAPL), selectively in parvalbumin neurons rescued anesthesia-induced deficits in pyramidal cell inhibition and hippocampus-dependent long-term memory. Conversely, partial depletion of parvalbumin neurons in neonates was sufficient to engender long-lasting memory impairment. Thus, loss of parvalbumin interneurons in postnatal mice following repeated general anesthesia critically contributes to memory deficits in adulthood.


Assuntos
Anestesia , Parvalbuminas , Camundongos , Animais , Parvalbuminas/genética , Parvalbuminas/metabolismo , Interneurônios/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/genética , Transtornos da Memória/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(35): e2121251119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994670

RESUMO

GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.


Assuntos
Aminoácidos , Eritrócitos , Ferro , Fígado , Macrófagos , Proteínas Serina-Treonina Quinases , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/deficiência , Aminoácidos/metabolismo , Anemia/metabolismo , Animais , Citofagocitose , Eritrócitos/metabolismo , Deleção de Genes , Hemólise , Hipóxia/metabolismo , Ferro/metabolismo , Fígado/citologia , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico
10.
J Biol Chem ; 298(9): 102277, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863436

RESUMO

La-related protein 1 (LARP1) has been identified as a key translational inhibitor of terminal oligopyrimidine (TOP) mRNAs downstream of the nutrient sensing protein kinase complex, mTORC1. LARP1 exerts this inhibitory effect on TOP mRNA translation by binding to the mRNA cap and the adjacent 5'TOP motif, resulting in the displacement of the cap-binding protein eIF4E from TOP mRNAs. However, the involvement of additional signaling pathway in regulating LARP1-mediated inhibition of TOP mRNA translation is largely unexplored. In the present study, we identify a second nutrient sensing kinase GCN2 that converges on LARP1 to control TOP mRNA translation. Using chromatin-immunoprecipitation followed by massive parallel sequencing (ChIP-seq) analysis of activating transcription factor 4 (ATF4), an effector of GCN2 in nutrient stress conditions, in WT and GCN2 KO mouse embryonic fibroblasts, we determined that LARP1 is a GCN2-dependent transcriptional target of ATF4. Moreover, we identified GCN1, a GCN2 activator, participates in a complex with LARP1 on stalled ribosomes, suggesting a role for GCN1 in LARP1-mediated translation inhibition in response to ribosome stalling. Therefore, our data suggest that the GCN2 pathway controls LARP1 activity via two mechanisms: ATF4-dependent transcriptional induction of LARP1 mRNA and GCN1-mediated recruitment of LARP1 to stalled ribosomes.


Assuntos
Aminoácidos , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases , Sequência de Oligopirimidina na Região 5' Terminal do RNA , RNA Mensageiro , Proteínas de Ligação a RNA , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/metabolismo , Animais , Técnicas de Cultura de Células , Imunoprecipitação da Cromatina , Fator de Iniciação 4E em Eucariotos/metabolismo , Fibroblastos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Science ; 377(6601): 80-86, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617374

RESUMO

Activation of microglia in the spinal cord dorsal horn after peripheral nerve injury contributes to the development of pain hypersensitivity. How activated microglia selectively enhance the activity of spinal nociceptive circuits is not well understood. We discovered that after peripheral nerve injury, microglia degrade extracellular matrix structures, perineuronal nets (PNNs), in lamina I of the spinal cord dorsal horn. Lamina I PNNs selectively enwrap spinoparabrachial projection neurons, which integrate nociceptive information in the spinal cord and convey it to supraspinal brain regions to induce pain sensation. Degradation of PNNs by microglia enhances the activity of projection neurons and induces pain-related behaviors. Thus, nerve injury-induced degradation of PNNs is a mechanism by which microglia selectively augment the output of spinal nociceptive circuits and cause pain hypersensitivity.


Assuntos
Hiperalgesia , Microglia , Dor , Traumatismos dos Nervos Periféricos , Corno Dorsal da Medula Espinal , Animais , Matriz Extracelular/patologia , Hiperalgesia/etiologia , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Microglia/patologia , Dor/patologia , Dor/fisiopatologia , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/patologia , Corno Dorsal da Medula Espinal/fisiopatologia
12.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579957

RESUMO

The encoding of noxious stimuli into action potential firing is largely mediated by nociceptive free nerve endings. Tissue inflammation, by changing the intrinsic properties of the nociceptive endings, leads to nociceptive hyperexcitability and thus to the development of inflammatory pain. Here, we showed that tissue inflammation-induced activation of the mammalian target of rapamycin complex 2 (mTORC2) triggers changes in the architecture of nociceptive terminals and leads to inflammatory pain. Pharmacological activation of mTORC2 induced elongation and branching of nociceptor peripheral endings and caused long-lasting pain hypersensitivity. Conversely, nociceptor-specific deletion of the mTORC2 regulatory protein rapamycin-insensitive companion of mTOR (Rictor) prevented inflammation-induced elongation and branching of cutaneous nociceptive fibers and attenuated inflammatory pain hypersensitivity. Computational modeling demonstrated that mTORC2-mediated structural changes in the nociceptive terminal tree are sufficient to increase the excitability of nociceptors. Targeting mTORC2 using a single injection of antisense oligonucleotide against Rictor provided long-lasting alleviation of inflammatory pain hypersensitivity. Collectively, we showed that tissue inflammation-induced activation of mTORC2 causes structural plasticity of nociceptive free nerve endings in the epidermis and inflammatory hyperalgesia, representing a therapeutic target for inflammatory pain.


Assuntos
Dor Crônica , Nociceptores , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nociceptores/fisiologia , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirolimo
13.
Nat Commun ; 13(1): 843, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149686

RESUMO

Activation of microglia in the spinal cord following peripheral nerve injury is critical for the development of long-lasting pain hypersensitivity. However, it remains unclear whether distinct microglia subpopulations or states contribute to different stages of pain development and maintenance. Using single-cell RNA-sequencing, we show that peripheral nerve injury induces the generation of a male-specific inflammatory microglia subtype, and demonstrate increased proliferation of microglia in male as compared to female mice. We also show time- and sex-specific transcriptional changes in different microglial subpopulations following peripheral nerve injury. Apolipoprotein E (Apoe) is the top upregulated gene in spinal cord microglia at chronic time points after peripheral nerve injury in mice. Furthermore, polymorphisms in the APOE gene in humans are associated with chronic pain. Single-cell RNA sequencing analysis of human spinal cord microglia reveals a subpopulation with a disease-related transcriptional signature. Our data provide a detailed analysis of transcriptional states of mouse and human spinal cord microglia, and identify a link between ApoE and chronic pain in humans.


Assuntos
Apolipoproteínas E/genética , Dor Crônica/genética , Microglia , Traumatismos dos Nervos Periféricos , Análise de Sequência de RNA , Medula Espinal , Animais , Proliferação de Células , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo Genético
14.
Pain ; 163(7): e821-e836, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913882

RESUMO

ABSTRACT: The pathophysiology of fibromyalgia syndrome (FMS) remains elusive, leading to a lack of objective diagnostic criteria and targeted treatment. We globally evaluated immune system changes in FMS by conducting multiparametric flow cytometry analyses of peripheral blood mononuclear cells and identified a natural killer (NK) cell decrease in patients with FMS. Circulating NK cells in FMS were exhausted yet activated, evidenced by lower surface expression of CD16, CD96, and CD226 and more CD107a and TIGIT. These NK cells were hyperresponsive, with increased CCL4 production and expression of CD107a when co-cultured with human leukocyte antigen null target cells. Genetic and transcriptomic pathway analyses identified significant enrichment of cell activation pathways in FMS driven by NK cells. Skin biopsies showed increased expression of NK activation ligand, unique long 16-binding protein, on subepidermal nerves of patients FMS and the presence of NK cells near peripheral nerves. Collectively, our results suggest that chronic activation and redistribution of circulating NK cells to the peripheral nerves contribute to the immunopathology associated with FMS.


Assuntos
Fibromialgia , Fibromialgia/metabolismo , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares , Nervos Periféricos
15.
Sci Rep ; 11(1): 15490, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326413

RESUMO

Long-lasting cognitive impairment in juveniles undergoing repeated general anesthesia has been observed in numerous preclinical and clinical studies, yet, the underlying mechanisms remain unknown and no preventive treatment is available. We found that daily intranasal insulin administration to juvenile mice for 7 days prior to repeated isoflurane anesthesia rescues deficits in hippocampus-dependent memory and synaptic plasticity in adulthood. Moreover, intranasal insulin prevented anesthesia-induced apoptosis of hippocampal cells, which is thought to underlie cognitive impairment. Inhibition of the mechanistic target of rapamycin complex 1 (mTORC1), a major intracellular effector of insulin receptor, blocked the beneficial effects of intranasal insulin on anesthesia-induced apoptosis. Consistent with this finding, mice lacking mTORC1 downstream translational repressor 4E-BP2 showed no induction of repeated anesthesia-induced apoptosis. Our study demonstrates that intranasal insulin prevents general anesthesia-induced apoptosis of hippocampal cells, and deficits in synaptic plasticity and memory, and suggests that the rescue effect is mediated via mTORC1/4E-BP2 signaling.


Assuntos
Anestesia/efeitos adversos , Insulina/administração & dosagem , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Administração Intranasal , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Fatores de Iniciação em Eucariotos/metabolismo , Medo , Feminino , Hipocampo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Transdução de Sinais
16.
Cell Rep ; 35(4): 109036, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910008

RESUMO

Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1. Here, we show that mice with selective ablation of 4E-BP2 in PCs display a reduced number of PCs, increased regularity of PC action potential firing, and deficits in motor learning. Surprisingly, although spatial memory is impaired in these mice, they exhibit normal social interaction and show no deficits in repetitive behavior. Our data suggest that, downstream of mTORC1/4E-BP2, there are distinct cerebellar mechanisms independently controlling social behavior and memory formation.


Assuntos
Transtorno Autístico/genética , Proteínas de Transporte/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas/genética , Células de Purkinje/metabolismo , Memória Espacial/fisiologia , Animais , Humanos , Camundongos
17.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876772

RESUMO

The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals to regulate critical cellular processes such as mRNA translation, lipid biogenesis, and autophagy. Germline and somatic mutations in mTOR and genes upstream of mTORC1, such as PTEN, TSC1/2, AKT3, PIK3CA, and components of GATOR1 and KICSTOR complexes, are associated with various epileptic disorders. Increased mTORC1 activity is linked to the pathophysiology of epilepsy in both humans and animal models, and mTORC1 inhibition suppresses epileptogenesis in humans with tuberous sclerosis and animal models with elevated mTORC1 activity. However, the role of mTORC1-dependent translation and the neuronal cell types mediating the effect of enhanced mTORC1 activity in seizures remain unknown. The eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 2 (4E-BP2) are translational repressors downstream of mTORC1. Here we show that the ablation of 4E-BP2, but not 4E-BP1, in mice increases the sensitivity to pentylenetetrazole (PTZ)- and kainic acid (KA)-induced seizures. We demonstrate that the deletion of 4E-BP2 in inhibitory, but not excitatory neurons, causes an increase in the susceptibility to PTZ-induced seizures. Moreover, mice lacking 4E-BP2 in parvalbumin, but not somatostatin or VIP inhibitory neurons exhibit a lowered threshold for seizure induction and reduced number of parvalbumin neurons. A mouse model harboring a human PIK3CA mutation that enhances the activity of the PI3K-AKT pathway (Pik3caH1047R-Pvalb ) selectively in parvalbumin neurons shows susceptibility to PTZ-induced seizures. Our data identify 4E-BP2 as a regulator of epileptogenesis and highlight the central role of increased mTORC1-dependent translation in parvalbumin neurons in the pathophysiology of epilepsy.


Assuntos
Epilepsia/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Neurônios/metabolismo , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Epilepsia/genética , Epilepsia/fisiopatologia , Fatores de Iniciação em Eucariotos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Neurônios/fisiologia , Parvalbuminas/genética , Parvalbuminas/metabolismo
18.
Prog Neurobiol ; 197: 101903, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32860876

RESUMO

Contextual fear conditioning (CFC) in rodents is the most widely used behavioural paradigm in neuroscience research to elucidate the neurobiological mechanisms underlying learning and memory. It is based on the pairing of an aversive unconditioned stimulus (US; e.g. mild footshock) with a neutral conditioned stimulus (CS; e.g. context of the test chamber) in order to acquire associative long-term memory (LTM), which persists for days and even months. Using genome-wide analysis, several studies have generated lists of genes modulated in response to CFC in an attempt to identify the "memory genes", which orchestrate memory formation. Yet, most studies use naïve animals as a baseline for assessing gene-expression changes, while only few studies have examined the effect of the US alone, without pairing to context, using genome-wide analysis of gene-expression. Herein, using the ribosome profiling methodology, we show that in male mice an immediate shock, which does not lead to LTM formation, elicits pervasive translational and transcriptional changes in the expression of Immediate Early Genes (IEGs) in dorsal hippocampus (such as Fos and Arc), a fact which has been disregarded by the majority of CFC studies. By removing the effect of the immediate shock, we identify and validate a new set of genes, which are translationally and transcriptionally responsive to the association of context-to-footshock in CFC, and thus constitute salient "memory genes".


Assuntos
Medo , Animais , Condicionamento Clássico , Expressão Gênica , Hipocampo , Masculino , Camundongos , Ribossomos
19.
Nature ; 586(7829): 412-416, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33029011

RESUMO

An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory1-4. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories5-10. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF211. Phosphorylation of the α-subunit of eIF2 (p-eIF2α), the central component of the integrated stress response (ISR), impairs long-term memory formation in rodents and birds11-13. By contrast, inhibiting the ISR by mutating the eIF2α phosphorylation site, genetically11 and pharmacologically inhibiting the ISR kinases14-17, or mimicking reduced p-eIF2α with the ISR inhibitor ISRIB11, enhances long-term memory in health and disease18. Here we used molecular genetics to dissect the neuronal circuits by which the ISR gates cognitive processing. We found that learning reduces eIF2α phosphorylation in hippocampal excitatory neurons and a subset of hippocampal inhibitory neurons (those that express somatostatin, but not parvalbumin). Moreover, ablation of p-eIF2α in either excitatory or somatostatin-expressing (but not parvalbumin-expressing) inhibitory neurons increased general mRNA translation, bolstered synaptic plasticity and enhanced long-term memory. Thus, eIF2α-dependent mRNA translation controls memory consolidation via autonomous mechanisms in excitatory and somatostatin-expressing inhibitory neurons.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Hipocampo/citologia , Consolidação da Memória , Neurônios/metabolismo , Somatostatina/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Fator de Iniciação 2 em Eucariotos/deficiência , Fator de Iniciação 2 em Eucariotos/genética , Potenciais Pós-Sinápticos Excitadores , Hipocampo/fisiologia , Potenciação de Longa Duração , Masculino , Memória de Longo Prazo , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Plasticidade Neuronal , Parvalbuminas , Fosforilação , Células Piramidais/fisiologia , Transmissão Sináptica
20.
Cell Signal ; 75: 109746, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858122

RESUMO

Deviations from the optimal level of mRNA translation are linked to disorders with high rates of autism. Loss of function mutations in genes encoding translational repressors such as PTEN, TSC1, TSC2, and FMRP are associated with autism spectrum disorders (ASDs) in humans and their deletion in animals recapitulates many ASD-like phenotypes. Importantly, the activity of key translational control signaling pathways such as PI3K-mTORC1 and ERK is frequently dysregulated in autistic patients and animal models and their normalization rescues many abnormal phenotypes, suggesting a causal relationship. Mutations in several genes encoding proteins not directly involved in translational control have also been shown to mediate ASD phenotypes via altered signaling upstream of translation. This raises the possibility that the dysregulation of translational control signaling is a converging mechanism not only in familiar but also in sporadic forms of autism. Here, we overview the current knowledge on translational signaling in ASD and highlight how correcting the activity of key pathways upstream of translation reverses distinct ASD-like phenotypes.


Assuntos
Transtorno do Espectro Autista/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Animais , Regulação da Expressão Gênica , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...